Incentivizing Side-Channel Freedom with
Leakage-Aware Computation

Gongqi Huang
Princeton University
gonggih@princeton.edu

Abstract

Microarchitectural side-channels have long been recognized
as a serious security threat. While the systems research com-
munity has proposed new architecture and system design
to close such channels, infrastructure providers continue
to deploy systems that rely on ad hoc mitigations. These
providers have little incentive to guarantee side-channel
freedom, as doing so requires additional effort, and victims
have no evidence to hold providers accountable. To address
this, instead of searching through the system design space
for an ultimate solution, we make microarchitectural side-
channel leakage tangible to victims through leakage-aware
computation, thereby incentivizing providers to guarantee
side-channel freedom. As a starting point, we argue that
making computations leakage-aware is both feasible and
practical for cache side-channel leakage.

1 Introduction

Microarchitectural side-channels have long been recognized
as a serious security threat, as they subvert the fundamen-
tal security guarantee of computer systems. Incidents have
demonstrated the practicality of exploiting them on real,
commodity hardware [4-6]. While the systems research com-
munity has proposed new architecture and system designs
to close such channels, infrastructure providers continue to
deploy systems that rely on ad hoc mitigations! [2, 3, 7].
These providers have little incentive to guarantee side-
channel freedom: deploying leakage-free systems requires
additional effort, and their effectiveness has yet to be battle-
tested. More importantly, side-channel leakages often do not
affect functional correctness and are thus difficult to notice.
As a result, even when leakage occurs, victims have no ev-
idence to hold providers accountable. Instead of searching
through system design space for an ultimate solution, we
make microarchitectural side-channel leakage tangible to
victims through leakage-aware computation, thereby incen-
tivizing providers to guarantee side-channel freedom. To
begin, we argue that making computations leakage-aware is
both feasible and practical for cache side-channel leakage.
The insight behind our methodology is that both attacker
and victim interact with a shared resource via a common
interface. A successful attack infers secrets by observing
changes in the state. If any observation always causes changes

IWe can catch a glimpse of this iceberg by running 1scpu.

Jingyuan Chen
Princeton University
leocjy@princeton.edu

Amit Levy
Princeton University
aalevy@princeton.edu

©) @

L

resource
MNew 7

® @

Figure 1. Symmetric Information Flow.

to the state, there must be a way for the victim to detect the
presence of an attack.

This condition is not just hypothetical. In practice, we have
observed that it holds across many real-world resource inter-
faces (e.g., cache, interconnects). This behavior is illustrated
in Figure 1. When the attacker learns some secret through
(1) — (2), they also create a flow (3) that captures this attack.
The victim can later detect this attack through (3) — (4),
and is thus leakage-aware.

Based on our insight, we put forth the Symmetry Con-
jecture of Side Channels”: The power of the attacker and
that of the victim are symmetric with respect to a common
interface over a shared resource. We specify this conjecture
in the following statement:

VI, (3h, Ex(Ie)) — (3h, En(En(Le)))

In the conjecture, I, represents a piece of information
about an event e (e.g.,‘e accessed address X”) that the attacker
is interested in; h stands for a valid history of events in the
system that contains e; Ej,(I,) is a proposition that states “I,
is exposed in history h”, meaning that I, can be learned by the
attacker through the interface in h. The full conjecture states
that if it is possible for I, to be exposed in some valid history,
then it is also possible for the information “I, is exposed” to
be exposed in some valid history. Hence, if the conjecture
holds, then for any information that the attacker can learn
through the interface, the victim has a way to detect such a
leakage through the same interface.

While eliminating microarchitectural side-channels in
practical systems may not be feasible in the near future,
our methodology can at least install a “check engine light”
in applications, providing users with a sense of security. We
hope users will make judicious decisions with this infor-
mation, rather than “drive to the shoreline with the check

engine light on?”

2Lyrics from Cinco de Mayo Shit Show by Marietta.

1 if secret {
2 doFoo;

3 } else {
4

5

doBoo;

Listing 1. Leaky Program P.

2 With Check Engine Light

Our goal is to have a program enhancer # — $* that
converts a given program P to its functionally-equivalent
version P*. P* is capable of detecting and alerting to any
of its cache side-channel leakage that occurs, making it
leakage-aware. The construction of P* involves three phases:
1) Preload phase: all secret-dependent memory accesses are
preloaded into the cache; 2) Execution phase: P is executed,
and the latency of each secret-dependent memory access is
recorded; 3) Check phase: the observed latencies are checked
against expected values, and any mismatch implies a cache
side-channel leakage. The detection is possible because the
preload phase ensures that, in the absence of leakage, the
observable cache state is known. In this section, we illus-
trate this process with an example and provide a preliminary
argument for its correctness. Finally, we briefly discuss the
challenges and solutions to making this approach practical.

2.1 Leaky Program P

Listing 1 shows a leaky program P — a program that contains
a one-bit-secret-dependent branch. Each possible path exe-
cutes a single instruction, with no additional memory access
other than its own instruction fetch. During the execution
of P, we assume a direct mapped cache with a line size equal
to that of one instruction. Furthermore, the attacker has full
control over a common cache interface (i.e., memory access
and cache line eviction) at any time and has full knowledge
of P’s text layout.

In this case, P is leaky because its cache footprint depends
on the secret. The attacker can infer the secret by checking
whether, for example, instruction doFoo is in the cache.

2.2 Strawman Leakage-Aware Program P*

We present our strawman P* in Listing 2. now! () is a macro
that inserts a timestamp instruction® (e.g., RDTSC in x86,
RDCYCLE in RISC-V), while time! () measures execution time
by inserting two timestamp instructions.

2.2.1 Informal Argument. We now provide an informal
argument that P* is indeed leakage-aware. To begin, we as-
sume that P* does not evict its own cache lines, and that

3We assume a timestamp instruction that has the semantics of returning
the current timestamp after it is fetched from memory.

Gonggqi Huang, Jingyuan Chen, and Amit Levy

let

(*¥la, *1b, *1lc, *1d);
let t0 = now!(Q);
let t1 = if secret {
la: doFoo; 1b: now!()
} else {
1lc: doBoo; 1d: now!()
e
if t1 - tO0 >= THRES
|| time!({ let _ = *la; }) >= THRES
10 || . // Omit checks for 1b, lc, 1d

11 { panic!("Leaked!"); }

© 00 N O O W N =

Listing 2. Leakage-Aware Program P*.

there exists a latency threshold, THRES, which reliably dis-
tinguishes between a cache hit and miss.

To infer the secret, the attacker must evict at least one
cache line of interest (i.e., cache lines touched by the branch)
and observe changes in a cache line. Suppose both the evic-
tion and observation occur before the branch (line 3), it is
impossible for the attacker to succeed, as no cache lines are
secret-dependent yet. If the eviction occurs before the branch
and the observation occurs right after, the checks (line 8-11)
will capture the eviction. Since all cache lines of interest have
been preloaded into the cache (line 1), their eviction must
result in a cache miss that is detectable by the victim. Finally,
if both actions happen after the branch, the attacker cannot
infer the secret because all accesses are not secret-dependent.
Therefore, we have shown P* is leakage-aware with respect
to the cache side-channel.

2.3 Challenges and Solutions

The main challenge to make the solution practical is that
it requires every secret-dependent memory access to be in-
strumented, which introduces significant performance over-
head*. Several workarounds are possible. First, we can reduce
the number of timestamp instructions while still preserv-
ing detection soundness. Alternatively, we can reduce the
timestamp instruction’s latency by using a separate software
thread (where a timestamp instruction is a cached memory
write) or implementing a faster timestamp instruction. Fi-
nally, non-timing-critical checks can be delayed until the
end, allowing earlier return of P’s result.

3 Conclusion

Achieving side-channel freedom isn’t necessarily a dream.
With the check engine light on, maybe all we lack is the will?

4For example, a single RDTSC requires 46 pops in AMD Zen 4 [1].

Incentivizing Side-Channel Freedom with Leakage-Aware Computation

References

[1] Agner Fog. 2022. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD and VIA
CPUs. https://www.agner.org/optimize/instruction_tables.pdf Re-
trieved at 2025-03-24.

[2] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time
Protection: The Missing OS Abstraction. In Proceedings of the Fourteenth
EuroSys Conference 2019 (Dresden, Germany) (EuroSys '19). Association
for Computing Machinery, New York, NY, USA, Article 1, 17 pages.
https://doi.org/10.1145/3302424.3303976

[3] Gonggqi Huang, Leon Schuermann, and Amit Levy. 2024. Bridge: A
Leak-Free Hardware-Software Architecture for Parallel Embedded Sys-
tems. In Proceedings of the 2nd Workshop on Kernel Isolation, Safety
and Verification (Austin, TX, USA) (KISV °24). Association for Comput-
ing Machinery, New York, NY, USA, 16-22. https://doi.org/10.1145/
3698576.3698765

[4] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19).

[5] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18).

[6] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner. 2022.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing
Attacks on x86. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 679-697. https://www.usenix.
org/conference/usenixsecurity22/presentation/wang-yingchen

[7] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus Peinado,
and Andrew Baumann. 2023. Core slicing: closing the gap between

leaky confidential VMs and bare-metal cloud. In 17th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 23).
USENIX Association, Boston, MA, 247-267. https://www.usenix.org/
conference/osdi23/presentation/zhou-zigiao

https://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1145/3302424.3303976
https://doi.org/10.1145/3698576.3698765
https://doi.org/10.1145/3698576.3698765
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/osdi23/presentation/zhou-ziqiao
https://www.usenix.org/conference/osdi23/presentation/zhou-ziqiao

	Abstract
	1 Introduction
	2 With Check Engine Light
	2.1 Leaky Program P
	2.2 Strawman Leakage-Aware Program P
	2.3 Challenges and Solutions

	3 Conclusion
	References

